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3. Linear evolutionary PDE

(1) Prove that, for any u◦ ∈ L2(Ω), there exists a solution of the Schrödinger equation i∂tu−∆u = 0 in Ω× (0,∞)
u = 0 on ∂Ω× (0,∞)

u(x, 0) = u◦(x) for t = 0.

and is given by

u(x, t) =
∞∑
k=1

ake
iλktφk(x), ak =

∫
Ω
u◦φk,

where {φk} is the sequence of eigenfunctions of the Laplacian in Ω.

(3 points)

(2) Let u◦ ∈ L2(Ω), and let u(x, t) be the solution of

(0.1)

 ∂tu−∆u = 0 in Ω× (0,∞)
u = 0 on ∂Ω× (0,∞)

u(x, 0) = u◦(x) for t = 0.

Prove that u→ u◦ in L2(Ω) as t→ 0, that is,

lim
t→0
‖u(·, t)− u◦‖L2(Ω) = 0.

(2 points)

(3) Let u◦ ∈ Hm(Ω) for some m ≥ 1, and let u(x, t) be the solution of (0.1).
(i) Prove that u→ u◦ in Hm(Ω) as t→ 0, that is,

lim
t→0
‖u(·, t)− u◦‖Hm(Ω) = 0.

(ii) Prove that
‖u(·, t)‖Hm(Ω) ≤ C‖u◦‖Hm(Ω)

for all t > 0.
(iii) Prove that

‖u(·, t)‖Hm+1(Ω) ≤
C

t1/2
‖u◦‖Hm(Ω)

for all t > 0.

(4 points)
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(4) (i) Let u◦ ∈ L2(Ω), and let u(x, t) be the solution of (0.1). Prove the following decay in
L2 norm as t→∞

‖u(·, t)‖L2(Ω) ≤ ‖u0‖L2(Ω)e
−λ1t

for all t > 0, where λ1 > 0 is the first eigenvalue of the Laplacian in Ω.

(ii) Let u◦ ∈ L2(Ω), and let u(x, t) be the solution of (0.1). Prove the following decay
in L∞ norm as t→∞

‖u(·, t)‖L∞(Ω) ≤ Ce−λ1t

for all t ≥ 1, where λ1 > 0 is the first eigenvalue of the Laplacian in Ω.

(3 points)

(5) (i) Let u be any solution of the heat equation

∂tu−∆u = 0 in Ω× (0,∞).

Prove that, for any r > 0, the function

U(x, t) := u(rx, r2t)

solves the heat equation in the domain rΩ := {rx : x ∈ Ω}.
How should we rescale the function u in order to obtain a solution of ∂tw−α∆w = 0

in Ω× (0,∞), with α > 0 ?

(ii) Let u be any solution of the wave equation

∂ttu−∆u = 0 in Ω× (0,∞).

How should we rescale the function u in order to obtain a solution of ∂ttw− c∆w = 0 in
Ω× (0,∞), with c > 0 ?

(2 points)

(6) We have two chickens, one weighting 1kg and the other one 2kg. Initially they are at
20◦C, and we want to bake them in the oven at constant temperature, say 200◦C.

If it takes 30 minutes to get the first chicken at 100◦C everywhere inside, how long
will it take for the second chicken?

Note: Assume the two chickens are identical in shape, and find the answer by rescaling.

(3 points)

(7) Let m > 1. Assume there exists a positive C2 solution of −∆S = S1/m in Ω, with S = 0
on ∂Ω. Use then separation of variables to find an explicit solution of the nonlinear
diffusion equation{

∂tu−∆(um) = 0 in Ω× (0,∞)
u = 0 on ∂Ω× (0,∞)

of the form u(x, t) = T (t)Sm(x), which is C2 for any t > 0, but which satisfies

u(x, t)→ +∞ as t→ 0 for every x ∈ Ω.

Note: The existence of the function S can be proved by using the methods of Chapter 5.

(3 points)
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(8) Prove that there exists a bounded smooth function f ∈ C∞(Ω) for which there is no
solution u ∈ C2(Ω× [0, 1]) of{

∂tu−∆u = 0 in Ω× (0, 1)
u(x, 1) = f(x) for t = 1.

This means that the backwards heat equation is not solvable.

(3 points)

(9) Let u be the solution of the Schrödinger equation i∂tu−∆u = 0 in Ω× (0,∞)
u = 0 on ∂Ω× (0,∞)

u(x, 0) = u◦(x) for t = 0.

Prove that, if u◦ is not C∞(Ω), then u is not C∞(Ω) for any t > 0.

(2 points)

(10) Let u(x, t) be any solution of{
∂tu−∆u = 0 in Ω× (0,∞)

u = 0 on ∂Ω× (0,∞).

(i) Prove that
d

dt

∫
Ω
|∇u|2dx ≤ 0

(ii) Prove that the function

J(t) = log

(∫
Ω
u2dx

)
is convex in t, for all t > 0.

(iii) Assume now that we have Neumann boundary conditions ∂u
∂ν = 0 on ∂Ω (instead

of u = 0 on ∂Ω) and that u > 0 in Ω. Prove that

d

dt

∫
Ω

log u dx ≥ 0

(3 points)

(11) Let u(x, t) be any solution of{
i∂tu−∆u = 0 in Ω× (0,∞)

u = 0 on ∂Ω× (0,∞).

Prove that
∫

Ω |∇u|
2dx is constant in time.

(2 points)

(12) Let u ∈ C2(Ω× [0,∞)) be a solution of the wave equation ∂ttu−∆u = 0 in Ω× [0,∞),
with initial data u(x, 0) = u◦(x) and ut(x, 0) = v◦(x), and with Neumann boundary
condition

∂u

∂ν
= 0 on ∂Ω× (0,∞).



4

(i) Show that
∫

Ω

(
|∂tu|2 + |∇u|2

)
is constant in time.

(ii) Show that
∫

Ω ∂tu is constant in time.

(iii) Deduce that
∫

Ω u(x, t)dx =
∫

Ω u◦ + t
∫

Ω v◦.

(3 points)

(13) Prove that any function of the form u(x, t) := v(x · e − t), with |e| = 1 and v ∈ C2(R),
is a solution of the wave equation ∂ttu−∆u = 0 in Rn × (−∞,∞).

Are there any solutions of the same form for the heat equation or the Schrödinger
equation?

(2 points)

(14) Let u be a solution of the Schrödinger equation i∂tu −∆u = 0 in Rn × R. Prove that,
for any ξ ∈ Rn, the function

v(x, t) := e
i
4

(2ξ·x−|ξ|2t)u(x, t)

also solves the Schrödinger equation i∂tv −∆v = 0 in Rn × R.

Note: This shows Galilean invariance of solutions.

(2 points)

(15) (i) Prove that the function

P (x, t) = 1/(4πt)n/2e−
|x|2
4t

satisfies the heat equation in Rn for all t > 0.

(ii) Deduce that, for any locally integrable and bounded initial condition u◦, the
function

u(x, t) =

∫
Rn

u◦(y)P (x− y, t)dy

is C∞(Rn × (0,∞)) and solves the heat equation in Rn for all t > 0.

(3 points)

(16) Let b ∈ C(Rn × R), and let u ∈ C2(Rn × [0, T ]) be a solution of

∂tu−∆u+ b · ∇u = 0 in Rn × (0, T )

with u→ 0 uniformly as |x| → ∞.
Prove that the maximum of u is attained at time t = 0, that is,

max
Rn×[0,T ]

u(x, t) = max
Rn

u(x, 0).

(3 points)
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